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Abstract. A new QCD analysis of deep inelastic scattering (DIS) data is presented. All available neutrino
and antineutrino cross sections are reanalyzed and included in the fit, along with charged-lepton DIS and
Drell–Yan data. A massive factorization scheme is used to describe the charm component of the structure
functions. Next-to-leading-order parton distribution functions are provided. In particular, the strange-sea
density is determined with a higher accuracy with respect to other global fits.

1 Introduction

In deep inelastic scattering (DIS) processes, a neutral or
charged lepton l interacts with a nucleon N yielding a
lepton l and a set of undetected hadrons X in the final
state. The kinematics of this process, l(k)+N(p) → l′(k′)+
X, is determined by two independent variables, besides
the energy of the incoming lepton. One usually chooses
them among the four Lorentz invariants

Q2 ≡ −q2 = −(k − k′)2, x =
Q2

2p · q ,

y =
p · q
p · k , W

2 = (q + p)2,

which are obtained experimentally by measuring the mo-
mentum, the direction of the scattered lepton and the ini-
tial momenta k, p.

Studies of DIS processes, on both the experimental [1]
and theoretical sides [2], have shed light on the nucleon-
internal dynamics. In particular, powerful tests of pertur-
bative quantum chromodynamics (pQCD) have been car-
ried out that consist of global analyses performed on a
large class of DIS observables. Among these, the structure
functions measured in neutrino (antineutrino) DIS play a
major role in the determination of the flavor distributions,
in particular the valence and the strange-sea densities.

What experiments directly measure is a differential
cross section from which the structure functions are ex-
tracted by means of a theoretical analysis. This includes
the application of electroweak radiative corrections, the
determination of R = σL/σT, the incorporation of possi-
ble nuclear effects, etc. In particular, the analysis of neu-
trino data is a difficult and delicate procedure (see [3] for
a clear and detailed description), and so far only a small
part of the information accumulated in ν(ν̄) DIS has been
exploited in the QCD parametrizations.

The purpose of this paper is to present a new global
analysis of DIS data which includes the available ν and
ν̄ cross section measurements1, in addition to the struc-
ture function data collected in charged-lepton DIS experi-
ments. We resort directly to the ν(ν̄) DIS differential cross
sections, avoiding the use of the neutrino structure func-
tion results. The latter are the product of a preanalysis
which may be (and often is) based on theoretical assump-
tions different from those of the global fit that one is per-
forming. Thus, for full consistency, we use only cross sec-
tion data. This limits our neutrino (and antineutrino) data
set to the BEBC (hydrogen target) [5], CDHS (hydrogen
and deuterium targets) [6], and CDHSW (iron target) [7]
measurements. The CHARM [8] and CCFR [9] experi-
ments do not provide cross sections but only structure
functions; hence their results are not included in our anal-
ysis.

The problem with the BEBC, CDHS, and CDHSW
data is that they cannot be used in the form in which they
were published, since the electroweak radiative corrections
were either incomplete or not applied at all and/or the
bin center corrections were not performed. Thus we had
to reevaluate the neutrino cross sections to take all these
corrections into account. This is the preliminary step of
our analysis. Since most of the ν(ν̄) DIS data come from
nuclear targets, nuclear corrections must also be applied.

Besides the neutrino data, the structure function mea-
surements from charged-lepton DIS experiments (NMC
[10], BCDMS [11], and H1 [12]) are included in our fits.
The only non-DIS data we use are the Drell–Yan [13–15]
data, which constrain the light sea.

Our fitting procedure is designed in such a way to take
properly into account the experimental uncertainties and
the correlations among them, which are known to affect

1 This type of analysis was proposed long ago by
M.W. Krasny [4].
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the Q2 slopes of the structure functions and ultimately
the determination of the parton densities [16].

An important feature of the QCD analysis presented
in this paper is the accurate treatment of the charm con-
tribution to the structure functions. A massive factor-
ization scheme is used, the so-called fixed flavor scheme
(FFS) [17]. It is known [18] that for a precise extraction
of the strange-sea density, charm mass effects cannot be
neglected and have to be correctly incorporated.

In extracting the parton distributions, the neutrino
data (in particular, the high-statistics CDHSW data) add
a great quantity of information to that coming from
charged-lepton DIS. The latter is insufficient to constrain
all flavor distributions, being essentially limited to one ob-
servable, F2. Charged-current DIS provides four more in-
dependent combinations of parton densities, F ν

2 , F ν̄
2 , xF ν

3 ,
xF ν̄

3 . As a consequence, the abundance of neutrino data in
our fit ensures an excellent accuracy in the determination
of the flavor densities.

A special emphasis will be given to the strange-sea
density. Because of the lack of data able to constrain it, in
the existing fits [19,20], this distribution is tightly related
to the nonstrange-sea distributions and is essentially bor-
rowed2 from the CCFR extraction [22]. Clearly this is not
a consistent procedure. Here we present the first fully con-
sistent determination of the strange distribution within a
global fit of all parton densities. The wealth of neutrino
and antineutrino data will also allow us to test the possi-
ble charge asymmetry of the strange sea (s 6= s̄) predicted
by some authors.

In the present work, the strong coupling constant is
independently fixed to a value close to the world average.
In a forthcoming paper we shall study the possibility of
determining αs from the minimization of the total χ2 of
the fit, and discuss the stability of this determination and
its correlation with the gluon density.

The article is organized as follows. In Sect. 2, we col-
lect the main theoretical ingredients of the QCD analysis
of DIS data. The reevaluation of the neutrino and antineu-
trino differential cross sections is the content of Sect. 3.
The fitting procedure is described in Sect. 4. Finally, the
results on cross sections, structure functions, and parton
distribution functions are presented in Sect. 5.

2 Deep inelastic scattering in QCD

The differential cross section of neutral-current (NC) DIS
of charged leptons (l), in the one-boson approximation and
for moderate Q2 � M2

Z, is given by

d2σlN

dxdy
=

8πα2
emMNE

Q2

[
xy2 F lN

1 (x,Q2)

+
(

1 − y − MNxy

2E

)
F lN

2 (x,Q2)
]
, (1)

2 In the GRV fit, [21] the strange distribution is assumed to
be zero at a very low Q2 scale and then entirely generated by
the QCD evolution.

Table 1. Leading-order expressions of F2 (l: light sector; c:
charm sector in the fixed flavor scheme (FFS)). The x and
Q2 arguments have been omitted. Only the slow-rescaled ar-
gument ξ has been explicitly indicated

F2,l F2,c

l±p x[ 4
9 (u + ū) + 1

9 (d + d̄ + s + s̄)] 4
9 ( αs

2π
) C

c,(0)
2,g ⊗ xg

l±n x[ 4
9 (d + d̄) + 1

9 (u + ū + s + s̄)] 4
9 ( αs

2π
) C

c,(0)
2,g ⊗ xg

νp 2x[ū + d|Vud|2 + s|Vus|2] 2ξ[d(ξ)|Vcd|2 + s(ξ)|Vcs|2]

νn 2x[d̄ + u|Vud|2 + s|Vus|2] 2ξ[u(ξ)|Vcd|2 + s(ξ)|Vcs|2]

ν̄p 2x[u + d̄|Vud|2 + s̄|Vus|2] 2ξ[d̄(ξ)|Vcd|2 + s̄(ξ)|Vcs|2]

ν̄n 2x[d + ū|Vud|2 + s̄|Vus|2] 2ξ[ū(ξ)|Vcd|2 + s̄(ξ)|Vcs|2]

If Q2 � M2
Z, charged-lepton NC DIS is essentially an elec-

tromagnetic reaction (that is dominated by one-photon
exchange), the Z0 contribution being totally negligible.
In (1), αem = 1/137 is the electromagnetic coupling con-
stant, E is the beam energy, and MN is the nucleon mass.

For charged-current (CC) neutrino (antineutrino) DIS,
one has

d2σν(ν̄)N

dxdy
=
G2

FMNE

π

(
M2

W

Q2 +M2
W

)2

×
[
xy2 F

ν(ν̄)N
1 (x,Q2)

+
(

1 − y − MNxy

2E

)
F

ν(ν̄)N
2 (x,Q2)

+(−)
(
y − y2

2

)
xF

ν(ν̄)N
3 (x,Q2)

]
, (2)

where MW is the W-boson mass, and GF is the Fermi
coupling constant.

In QCD, the structure functions F2, FL = F2 − 2xF1,
and xF3 are given by the convolution of the parton distri-
bution functions (pdf) with some perturbatively calcula-
ble coefficient functions. In the kinematic range covered by
the analysis presented in this article, the contribution of
the b quark is negligible, and the only heavy quark consid-
ered is charm. Therefore we split the structure functions
into two components

Fi(x,Q2) = Fi,l(x,Q2) + Fi,c(x,Q2), i = 2, 3, L
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Table 2. Same as Table 1, for xF3

xF3,l xF3,c

νp 2x[d|Vud|2 + s|Vus|2 − ū] 2ξ[d(ξ)|Vcd|2 + s(ξ)|Vcs|2]

νn 2x[u|Vud|2 + s|Vus|2 − d̄] 2ξ[u(ξ)|Vcd|2 + s(ξ)|Vcs|2]

ν̄p 2x[u − d̄|Vud|2 − s̄|Vus|2] −2ξ[d̄(ξ)|Vcd|2 + s̄(ξ)|Vcs|2]

ν̄n 2x[d − ū|Vud|2 − s̄|Vus|2] −2ξ[ū(ξ)|Vcd|2 + s̄(ξ)|Vcs|2]

where Fi,l(x,Q2) is the light-parton contribution, and
Fi,c(x,Q2) is the charm contribution. In the CC case, the
latter mixes charm with light quarks.

The massive scheme that we adopt is the fixed flavor
scheme [17] in which charm is a heavy quark in absolute
sense of “heavy”. This means that there is no such thing
as the charm density function, and charm is radiatively
produced. Consequently, the number of active flavors is
set to 3, irrespective of Q2. The FFS has been shown to
be more stable than the alternative massive scheme, the
variable flavor scheme (VFS) [23], at moderate Q2 where
most of the neutrino data lie [24,25].

In the strong coupling, heavy-quark thresholds are ac-
counted for according to the prescription of [26] (with
mc = 1.5 GeV and mb = 4 GeV).

The leading-order (LO) expressions for F2 and xF3 are
collected in Tables 1 and 2. Note that:

– ξ = x(1 +Q2/m2
c) is the slow-rescaling variable; mc =

1.5 GeV is the charm mass.
– Vij are the Cabibbo–Kobayashi–Maskawa matrix ele-

ments. We shall use |Vus| = |Vcd| = 0.224 and |Vud| =
|Vcs| =

√
1 − |Vus|2.

– The symbol ⊗ stands for convolution:

f ⊗ g =
∫ 1

ax

dz
z
f(z)g(x/z) ,

where a = 1 for the light sector, a = 1 + 4m2
c/Q

2 for
NC charm production, and a = 1 + m2

c/Q
2 for CC

charm production.
– The LO charm contribution to F2 in the neutral-

current charged-lepton case is an O(αs) quantity in the
fixed flavor scheme. Cc,(0)

2,g is the LO Wilson coefficient
for the photon–gluon fusion process [27]. Explicitly:

F lN
2,c(x,Q

2) =
4
9

(
αs

2π
)Cc,(0)

2,g (m2
c/Q

2) ⊗ xg(µ2) , (3)

where the strong coupling is evaluated at the factor-
ization scale µ, and Cc,(0)

2,g (z,m2
c/Q

2) can be found, for
instance, in [17].

– The charm production is different in neutral and
charged-current DIS. In the former case, it is given
at LO by a gluon splitting into a cc̄ pair. In the latter
case, it is given by the direct process W+s → c, with
the slow-rescaling variable taking into account the ef-
fect of the charm mass.

– At order α0
s the longitudinal structure function FL =

F2 − 2xF1 vanishes.

The QCD analysis performed in this paper is at the
next-to-leading-order (NLO) level (the renormalization
scheme adopted is MS). NLO is O(αs) for the light sec-
tor and the charm contribution to CC DIS, and O(α2

s )
for the charm contribution to NC DIS in the fixed fla-
vor scheme. Since FL vanishes at order α0

s , we include in
our NLO analysis, for consistency with the treatment of
the charm structure function, the order-α2

s contribution
to FL, except for the strange-charm component of FL, for
which the O(α2

s ) longitudinal Wilson coefficients are not
yet known. This contribution has a very little effect in the
kinematic domain of our analysis.

The light-parton components of the structure func-
tions have the form (for illustration, we write only F2 for
the electromagnetic case):

F lN
2,l (x,Q

2) =
∑

f=q,q̄

e2f{(1+
αs

2π
C

(1)
2,f )⊗xf+

αs

2π
C

(1)
2,g ⊗xg} .

(4)
The MS Wilson coefficients C(1)

i,q and C(1)
i,g with i = 2, 3, L

can be found in Appendix I of [28]. As mentioned above,
for FL,l we consider also the O(α2

s ) contributions to the
coefficient functions calculated in [29]3.

The parton densities xf and xg are obtained by the so-
lution of the DGLAP equations at NLO [30]. For the light
sector, we choose

√
Q2 as the factorization and renormal-

ization scale.
The NLO expression of the charm contribution to the

NC structure functions is

F lN
2,c(x,Q

2) =
αs

2π

{
4
9

[
C

c,(0)
2,g (m2

c/Q
2)

+
αs

2π
C

c,(1)
2,g (m2

c/Q
2)

]
⊗ xg(µ2)

+
α2

s

(2π)2
∑

f=q,q̄

[
4
9
C

c,(1)
2,f (m2

c/Q
2) ⊗ xf(µ2)

+ e2f D
c,(1)
2,f (m2

c/Q
2) ⊗ xf(µ2)

]}
. (5)

The NLO coefficients Cc,(1) and Dc,(1) for F lN
2,c and F lN

L,c
have been computed in the fixed flavor scheme in [31]. For
our calculations, we have used the tables presented in [32].

The NLO strange-charm component of the structure
functions is given by (omitting the Cabibbo-suppressed
term and again writing only F2 for simplicity)

F νN
2,c (x,Q2) = 2 {(1+

αs

2π
H

c,(1)
2,f )⊗ξs+ αs

2π
H

c,(1)
2,g ⊗ξg} , (6)

3 We thank W. van Neerven for having provided us the code
which computes the order-α2

s Wilson coefficients of FL.
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The Wilson coefficients Hc,(1)
i,f and Hc,(1)

i,g (i = 2, 3, L) have
been computed in [33] and can be found, with a convention
update, also in [34,35]. The factorization and renormaliza-
tion scale for the charm structure functions is chosen to
be

√
Q2 +m2

c .

3 Re-evaluation of neutrino cross sections

3.1 Bin center and radiative corrections

We start with a general description of the procedure of
bin center and electroweak radiative corrections. We shall
then give the details of the application of this procedure
to the various data sets.

The neutrino DIS cross sections are determined experi-
mentally in bins of three kinematic variables, say (x, y, E).
The total cross section σtot

ijk corresponding to the bins
[xi, xi+1], [yj , yj+1], and [Ek, Ek+1] is given by

σtot
ijk ≡

∫ xi+1

xi

∫ yj+1

yj

∫ Ek+1

Ek

dφ
dE

d2σ

dxdy
dE dxdy

=
Nijk

C
(7)

where C is the number of scattering centers, Nijk is the
number of events corrected for detector effects and back-
ground contamination observed in the bin (i, j, k), and
dφ/dE is the neutrino beam-energy flux.

In order to relate σtot
ijk to the differential cross section,

we invoke the average theorem: There exists at least one
point (x̄i, ȳj , Ēk) inside the bin (i, j, k) such that the fol-
lowing relation holds:

d2σ(x̄i, ȳj , Ēk)
dxdy

=
σtot

ijk

Sijk
, (8)

where Sijk =
∫ xi+1

xi

∫ yj+1

yj

∫ Ek+1

Ek

dφ
dE dE dxdy is the bin sur-

face.
The differential cross section defined in (8) must be

corrected for electroweak radiation effects and translated
to the bin centers (xc

i , y
c
j , E

c
k). This is done by the con-

struction of an “experimental” Born differential cross sec-
tion defined as

d2σB
exp(xc

i , y
c
j , E

c
k)

dxdy
≡ d2σ(x̄i, ȳj , Ēk)

dxdy

× Sijk d2σ̃B+R(xc
i , y

c
j , E

c
k)/dxdy∫ xi+1

xi

∫ yj+1

yj

∫ Ek+1

Ek

dφ
dE

d2σ̃B+R

dxdy dE dxdy

× d2σ̃B(xc
i , y

c
j , E

c
k)/dxdy

d2σ̃B+R(xc
i , y

c
j , E

c
k)/dxdy

(9)

where the tilde symbol designates the quantities which are
theoretically computed, and the superscripts B+R and B
mean that these calculations are performed including or
not, respectively, the higher-order electroweak corrections.

The first term on the r.h.s. of (9) is given by (8). The sec-
ond term embodies the bin center corrections and requires
a smooth parametrization of the data. The third term in-
corporates the radiative corrections.

Combining the last two terms, we get

dσB
exp(xc

i , y
c
j , E

c
k)

dxdy
≡ Nijk

C

× dσ̃B(xc
i , y

c
j , E

c
k)/dxdy∫ xi+1

xi

∫ yj+1

yj

∫ Ek+1

Ek

dφ
dE

dσ̃B+R(x,y,E)
dxdy dE dxdy

. (10)

The electroweak corrections to charged-current DIS
were computed in [36,37]. In our analysis we used the
program of [38], based on the results of [37]. At the lowest
order, radiative corrections include the radiation of virtual
and real photons from the charged-lepton and quark legs,
and the γ–W box diagram. We found that these correc-
tions can reach ∼ 20% in some kinematic domains. The
correction factor – the third term in (9) – is a ratio, hence
it is rather insensitive to QCD corrections [3]. Thus, for
simplicity, we computed it at leading order in QCD.

We also evaluated the effects of the higher-order γ radi-
ation from the charged-lepton leg [39], using the program
HECTOR [40]. This correction typically does not exceed
∼ 0.5%, and was applied only to the CDHSW data, which
are statistically more significant.

3.1.1 CDHSW corrections

The CDHSW Collaboration published [7] the νFe and ν̄Fe
differential cross sections corrected for detector effects and
background subtraction. The measurements are binned in
x and y for nine different values of the neutrino beam en-
ergies Ec

k between 23 GeV and 187.6 GeV. Neither the bin
center correction in x and y nor the radiative corrections
were applied; thus the full correction of (9) is needed.

We cannot use any of the existing fits to evaluate the
correction factors of (9) because they do not account for
nuclear effects. Thus we adopt an iterative procedure. In
the first step, the bin center correction and the radiative
corrections are determined independently: the former by
a parametrization obtained in two different ways (see be-
low), and the latter by a standard fit (we use the LO-GRV
pdf [21]). Then, we perform an LO-QCD fit to the cor-
rected CDHSW cross sections, the CDHS data, and the
BCDMS, NMC, and SLAC [41] structure functions4. Us-
ing the pdf of this fit, we reevaluate the full correction
factor of (9) and we iterate this step until the corrected
differential cross sections get stable. In practice, to achieve
stability, only two iterations are required.

As we have mentioned, the smooth parametrization of
the data (required in the bin center correction) is obtained
by two different methods: (i) a fit of the CDHSW cross
sections (fitting method), and (ii) an unfolding procedure
(unfolding method).

4 Nuclear corrections to neutrino data are applied as ex-
plained in Sect. 3.2.
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Fig. 1. a Correction factor applied to CDHSW νFe data
of the 111 GeV beam-energy sample, as a function of
y for various x bins; b same as a but for CDHSW
ν̄Fe data; c electroweak radiative correction factor δrad ≡
(d2σ̃B+R/dxdy)/(d2σ̃B/dxdy)−1 in percent for CDHSW νFe;
d same as c but for CDHSW ν̄Fe

In the first method, the published CDHSW νFe and
ν̄Fe differential cross section data are fitted to

∫ xi+1

xi

∫ yj+1

yj

d2σ̃ν(ν̄)(x, y, Ec
k)

dxdy
dxdy, k = 1, ..., 9

where σ̃ν(ν̄) is computed at LO using simple
Buras–Gaemers-type pdf [42] (which incorporate analyti-
cally the Q2 dependence). In parallel, we adopted also the
unfolding method (described in Appendix A). The differ-
ence of the results obtained by the two procedures can be
taken as a (partial) estimate of the uncertainty regarding
the correction factor applied to neutrino cross sections.
We found that after two iterations the results of the two
methods are compatible within 1%.

In Fig. 1a,b we show the total correction factors ap-
plied to the data of the 111-GeV beam sample, as a func-
tion of yj for fixed xi. They vary between +6% and −4%
and are roughly identical for neutrino and antineutrino
beams. In Fig. 1c,d, we show the contribution of the elec-
troweak radiative corrections alone, which turns out to be
the dominant one.

As for the normalization of the CDHSW data, in [7]
they were normalized by the use of the average total cross
sections of [43], i.e., the ratios σνFe/Eν (σν̄Fe/Eν̄) were
assumed to be independent of the beam energy. This is
a strong assumption in view of the fact that a linear rise

Table 3. Results of the minimization of χ2
ν and χ2

ν̄ . The linear
functions of the fits are defined as σ/E =< σ/E > (ā1E + ā2)
where < σ/E > is the average value (see text). Errors on the
parameters are also given

āν
1 āν

2 āν̄
1 āν̄

2

(3 ± 5) × 10−4 0.98 ± 0.05 (−2.4 ± 0.5) × 10−5 1.00 ± 0.04
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Fig. 2. Total cross sections of νFe (top) and ν̄Fe (bot-
tom) from CDHSW. The shaded areas are the one-standard-
deviation error bands corresponding to the linear fits described
in Sect. 3.1.1. The curves are the results of fit1. The error bars
correspond to the quadratic sum of statistical and systematic
errors

with the energy is not experimentally excluded [43]. It is
therefore important to check the energy dependence5.

To this end, we performed a linear fit to the measure-
ments σνFe(Eν)/Eν and σν̄Fe(Eν̄)/Eν̄ of [43]. The results,
renormalized by the average values < σνFe/Eν >= 0.703×
10−38cm2/GeV and < σν̄Fe/Eν̄ >= 0.331 × 10−38cm2

/GeV, are given in Table 3 and shown in Fig. 2 together
with the one-standard-deviation band, which is computed
according to the formulas of Appendix B (we call χ2

ν and
χ2

ν̄ the χ2 of these fits). A linear rise of σνFe(Eν)/Eν with
Eν is clearly compatible with the data.

To take into account the effect of the uncertainty of
this fit on the CDHSW data, we allow the parameters aν

and aν̄ to vary during the global pQCD fit by adding the
term

2∑
i,j=1

(aν
i − āν

i )Mν
ij(a

ν
j − āν

j ) + (aν̄
i − āν̄

i )M ν̄
ij(a

ν̄
j − āν̄

j ) (11)

5 We thank M.W. Krasny for having suggested that we take
the energy dependence of the CDHSW data into account in
our analysis.
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to the global χ2 expression. Here āν
i and āν̄

i are the pa-
rameter values obtained from the preliminary linear fits,
and the matrices Mν

ij and M ν̄
ij are defined as: Mν

ij =
(1/2) ∂2χ2

ν/∂a
ν
i ∂a

ν
j , M ν̄

ij = (1/2) ∂2χ2
ν̄/∂a

ν̄
i ∂a

ν̄
j .

Another work done on the CDHSW data involves the
separation of correlated and uncorrelated systematic er-
rors. The correlated systematic errors are dominated [44]
by a possible shift of the hadronic energy by ±0.5 GeV.
Because no information has been published, we had to es-
timate the effects of this uncertainty on the cross section
measurements. In CDHSW, the beam energy Eν (Eν̄) is
experimentally reconstructed [7] via Eν = Eµ +EX −MN,
where Eµ is the measured outgoing muon energy and EX

is the measured hadronic energy in the final state. Thus a
shift of the hadronic energy induces a variation of the kine-
matic variables: (x, y,Q2) → (x±, y±, Q2

±). Our estimate
of the relative differential cross section error δ±

ijk induced
by such shifts is therefore

δ±
ijk =

∫ xi+1

xi

∫ yj+1

yj

d2σ̃B+R(x±,y±,E±
k )

dxdy dxdy∫ xi+1

xi

∫ yj+1

yj

d2σ̃B+R(x,y,E)
dxdy dxdy

where the cross sections σB+R are computed as described
above. The uncorrelated systematic errors are then ob-
tained by the quadratic subtraction of the estimated cor-
related errors from the published systematic errors σsyst

ijk

σuncor
ijk =

√
(σsyst

ijk )2 − max(δ+ijk, δ
−
ijk)2.

The treatment of both types of errors in the fit is described
in Sect. 4.

Finally, because CDHSW belongs to an old generation
of experiments, one may worry that possible sources of er-
rors at high y have been neglected in their analysis. In par-
ticular, one may question two points of the CDHSW anal-
ysis (see [3] for more details): (i) a rejection cut against the
dimuon events was used, but no correction for it was ap-
plied; (ii) the background coming from muon production
in hadronic showers was not taken into account. Using the
recent CCFR results on σν,ν̄

2µ /σ
ν,ν̄
1µ [45] and on the produc-

tion rate of muons in hadronic showers [46], we estimated
the effect of these two sources of errors on the measure-
ments and found it to be at the level of 1% at most.

3.1.2 CDHS corrections

The CDHS Collaboration measured [6] the ν(ν̄)H and
ν(ν̄)Fe differential cross sections. Both the bin center cor-
rections and the radiative corrections were applied. The
latter, however, are incomplete. Only the γ radiation from
the muon leg was in fact considered. Hence, our first step
was to uncorrect the published CDHS cross sections as
follows:

d2σuncorr(xc
i , y

c
j , E

c
k)

dxdy
=

d2σpubl(xc
i , y

c
j , E

c
k)

dxdy
(12)

×d2σ̃B+µ(xc
i , y

c
j , E

c
k)/dxdy

d2σ̃B(xc
i , y

c
j , E

c
k)/dxdy

,

where the superscript B+µ means that only the radiation
from the muon leg was included (to compute it, we used a
modified leading-order version of the HECTOR program).

Then we applied to d2σuncorr/dxdy the full radiative
correction factor (i.e., the third term in (9)

d2σB
exp(xc

i , y
c
j , E

c
k)

dxdy
=

d2σuncorr(xc
i , y

c
j , E

c
k)

dxdy
(13)

× d2σ̃B(xc
i , y

c
j , E

c
k)/dxdy

d2σ̃B+R(xc
i , y

c
j , E

c
k)/dxdy

.

In the original paper [6], iron and hydrogen data were
normalized by the use of σνFe/Eν = 0.625 × 10−38cm2

/GeV and σν̄Fe/Eν̄ = 0.3 × 10−38cm2/GeV. Since that
time, the total νFe and ν̄Fe cross sections have been mea-
sured more precisely [43]. We therefore applied a new over-
all correction factor corresponding to σνFe/Eν = 0.703 ×
10−38cm2/GeV and σν̄Fe/Eν̄ = 0.331 × 10−38cm2/GeV
[43]. We have also improved the overall normalization of
the hydrogen data, combining the CDHS [6] σν(ν̄)H/σν(ν̄)Fe

and BEBC [47] σν(ν̄)H/σν(ν̄)Ne results. Assuming no cor-
relations between these experiments, we determined the
absolute normalization of the CDHS hydrogen data us-
ing: σνH/Eν = 0.451 × 10−38cm2/GeV and σν̄H/Eν̄ =
0.473 × 10−38cm2/GeV. The remaining error is 3.3% for
the neutrino beam and 5.3% for the antineutrino beam. In
summary, the νFe, ν̄Fe, νH and ν̄H published CDHS data
have been renormalized by +12.5%, +10.3%, +14.5% and
+20.6%, respectively.

3.1.3 BEBC measurements

Among the BEBC publications, only one [5] gives enough
information for the differential cross sections to be recon-
structed without any QCD assumptions. In this article,
the corrected number of events is given in bins of x and
y for a given range of Q2. As in the case of the CDHS
data, the radiative corrections were applied incompletely,
considering only the radiation from the muon leg. Hence
we uncorrected the published BEBC data as we did for
CDHS (except that now we have the number of events
instead of the differential cross sections)

Nuncorr
ijk = Npubl

ijk

×
∫ xi+1

xi

∫ yj+1

yj

∫ Emax

Emin

dφ
dE

d2σ̃B+µ(x,y,E)
dxdy dxdydE∫ xi+1

xi

∫ yj+1

yj

∫ Emax

Emin

dφ
dE

d2σ̃B(x,y,E)
dxdy dxdydE

. (14)

Then we inserted Nuncorr
ijk into (10) and constructed the

experimental Born cross section

d2σB
exp(xc

i , y
c
j , E

c
k)

dxdy
=
Nuncorr

ijk

C

× dσ̃B(xc
i , y

c
j , E

c
k)/dxdy∫ xi+1

xi

∫ yj+1

yj

∫ Emax

Emin

dφ
dE

dσ̃B+R(x,y,E)
dxdy dE dxdy

. (15)
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The beam-energy flux function of [48] was used to com-
pute the correction factors6, with the kinematic cuts ap-
plied in the data analysis taken into account: Q2 > 2
GeV2, W 2 > 4 GeV2, 5 < E < 160 GeV and Eµ > 5 GeV
(Eµ being the scattered muon energy).

One should notice that: (i) The beam-energy flux is
not known absolutely, hence the absolute normalization
of the data has to be determined by the global fit. (ii)
The systematic errors are not available.

3.2 Nuclear effects

Most of the neutrino DIS data come from experiments
with nuclear targets (deuteron or heavy nuclei). Thus they
have to be corrected for nuclear effects, which are known
to be quite relevant (see, for instance, [49,50]).

3.2.1 Deuteron

We correct the calculated nucleon structure functions for
nuclear binding, Fermi motion, and off-shell effects using
the results of the covariant approach of Melnitchouk, et
al. [51]7. The neutrino structure functions F νD

1 , F νD
2 and

F νD
3 are treated analogously.

The calculation of [51] describes only the high-x (x &
0.2) behavior of the deuteron structure functions. At small
x, other mechanisms are at work (antishadowing and shad-
owing), but they are negligible in the x and Q2 regions of
the deuteron data entering our analysis [52].

3.2.2 Heavy nuclei

All CDHSW and a large fraction of CDHS data are ob-
tained from scattering off iron nuclei. Since the theoreti-
cal understanding of nuclear effects in heavy nuclei is still
uncertain and model-dependent [49,50], we adopt an em-
pirical procedure to perform the nuclear corrections.

The experimental ν(ν̄)Fe differential cross sections are
fitted to

dσν(ν̄)Fe =
dσν(ν̄)Fe

iso

R
ν(ν̄)
iso

, (16)

where Rν(ν̄)
iso is the correction factor for the nonisoscalarity

of iron,

R
ν(ν̄)
iso =

(dσν(ν̄)p + dσν(ν̄)n)/2
(Z dσν(ν̄)p + (A− Z) dσν(ν̄)n)/A
(A = 55.8, Z = 26) , (17)

and dσν(ν̄)Fe
iso is the isoscalar iron cross section which in-

corporates the nuclear corrections. Thus

dσν(ν̄)Fe
iso = dσν(ν̄)D ×Riso

nucl

6 We thank U. Katz for having provided us the FORTRAN
code computing the beam-energy fluxes used in [48].

7 We thank W. Melnitchouk for having provided us the com-
puter code of his calculation.

where Riso
nucl is a function embodying the nuclear effects

on an isoscalar target. Riso
nucl consists of two factors

Riso
nucl = RFe/D ×Rl

iso . (18)

The first factor is the Fe/D structure function ratio

RFe/D =
FFe

2

FD
2
, (19)

which is obtained from a fit to the published experimental
data on FFe

2 /FD
2 , uncorrected for isoscalarity. The second

factor contains the isoscalarity corrections

Rl
iso =

(F lp
2 + F ln

2 )/2

(Z F lp
2 + (A− Z)F ln

2 )/A
. (20)

RFe/D is a function of x only because there is no ex-
perimental evidence of a significant Q2 dependence (for a
recent study, see [53]). Theoretically, a higher-twist (i.e.,
power-like) Q2 dependence is expected at small x and
Q2 ∼ 1 GeV2 [54,55], but at larger Q2, in the region cov-
ered by our analysis, shadowing is a scaling phenomenon
[56,57].

The small-x (x < 0.1) νFe and ν̄Fe are excluded in
our analysis. The reason is that in this region, there are
a number of uncertainty sources affecting the determina-
tion of Rnucl. First of all, there is an unsolved discrepancy
between the two measurements RFe/D at small x, namely
between E665 [58] and NMC [53]. Second, the use of the
charged-lepton DIS data to determine the Fe/D ratio of
neutrino cross sections in (16) is justified by the BEBC
Ne target results’ [59] being in good agreement with the
NMC results on C [53] (see [1]), but the situation is ex-
perimentally not so clear for x . 0.1, where different nu-
clear corrections for charged-lepton and neutrino structure
functions are expected from a theoretical point of view
[60]. Finally, the F2 and xF3 corrections might be differ-
ent at small x [61]. Thus the cut at x = 0.1 removes from
our fits the more controversial kinematic region, as it does
for nuclear corrections.

We then performed a fit to the SLAC [62] BCDMS
[63] FµFe

2 /FµD
2 data in the range 0.1 < x < 0.65. For the

function RFe/D(x), we chose the empirical form

RFe/D(x) = α1 + α2x+ α3x
2 (21)

where αi, i = 1, 2, 3 are the free parameters of the fit.
The parameters ᾱi minimizing the χ2 of this fit (we shall
denote it χ2

Fe/D) are given in Table 4. The result of the fit is
shown in Fig. 3 together with the one-standard-deviation
error band.

In Fig. 4a,b, we plotted the isoscalarity and nuclear
+isoscalarity corrections computed from the structure
functions obtained with our fit (see Sect. 5).

4 The analysis

4.1 Data entering the fit

Our analysis includes the neutrino and antineutrino cross
section data of BEBC [5], CDHS [6], and CDHSW [7]. The
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Table 4. Results of the minimization of χ2
Fe/D (see text)

ᾱ1 ᾱ2 ᾱ3

1.091 ± 0.021 -0.34 ± 0.12 -0.09 ± 0.16

Table 5. Number of events and the limits of the kinematic
domain covered by the neutrino experiments considered in our
analysis

events ∆x ∆Q2 (GeV2) ∆y

CDHSW (νFe) 640 000 0.015–0.65 0.2–240 0.037–0.87
CDHSW (ν̄Fe) 550 000 ” ” ”

CDHS (νH) 2 100 ” ” ”
CDHS (ν̄H) 1 100 ” ” ”
BEBC (νD) 12 100 0.03–0.65 3–75 0.05–0.95
BEBC (ν̄D) 5 400 ” ” ”
BEBC (νH) 9 800 0.03–0.65 3–75 0.05–0.95
BEBC (ν̄H) 4 900 ” ” ”

Table 6. Kinematic range of the charged-lepton DIS and
Drell–Yan (DY) data sets entering our fits

∆x ∆Q2 (GeV2)
NMC (µp, µD) 0.008–0.5 0.8–60
BCDMS (µp) 0.07–0.75 7.5–230

H1-94 (ep) 3.2 × 10−5–0.32 1.5–5000
E605 (DY) 0.12–0.4 22.6–248
NA51 (DY) 0.18 27.2
E866 (DY) 0.036–0.312 30–164

number of collected events, the number of points, and the
kinematic domain covered by these experiments are listed
in Table 5.

Besides the neutrino data, which we discussed at length
in Sect. 3, the bulk of data entering our fits consist of
structure functions from various charged-lepton DIS ex-
periments: BCDMS [11], H1 [12], and NMC [10] (see Ta-
ble 6).

As for BCDMS, we do not use the merged structure
function data, which is obtained by measurements put to-
gether at different beam energies, but rather the data on
the reduced cross section

Q2

4πα2
emMNE

1
Y

d2σ

dxdy
, Y = 1+(1−y)2−MNxy

E
, (22)

for each beam energy (we retrieved the original data from
[64]).

So that a redundancy of data sets can be avoided, and
(most importantly) the number of experimental parame-
ters in the χ2 minimization limited, the CDHS iron data,
which are in agreement with the CDHSW data, do not
enter the fit. For the same reasons, the ZEUS F2 data [65]
are not included (ZEUS and H1 1994 data are consistent
within 1–2%, as shown by a recent pQCD analysis [66]).
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Drell–Yan (DY) data are introduced to constrain the
nonstrange sea. Three measurements are used. We fit-
ted the differential cross section for the reaction pCu→
µ+µ−X measured by E605 [13]. The cross section is cal-
culated at NLO8. For Drell–Yan processes, the charm con-
tribution is small [68] and is neglected in our analysis. No
higher-twist corrections are required [69] since the kine-
matic domain covered by E605 avoids the phase space
boundaries where these corrections are expected to be im-
portant9.

The other Drell–Yan results that we use are the mea-
surements of the DY asymmetry in pp and pD collisions
by NA51 [14] and E866 [15]. These data constrain the ratio
ū/d̄.

The kinematic cuts applied to the DIS data entering
the fit are:

– Q2 ≥ 3.5 GeV2 and W 2 ≥ 10 GeV2.

In this region, higher-twist effects are negligible [71]. Tar-
get mass corrections [72] are also very small but have been
taken into account in our calculations.

Because of the W 2 and Q2 cuts, the E665 [73], H1
(1995) [74], SLAC [41], and ZEUS (1995) F2 data [75] do
not enter our fits.

Finally, we reject the CDHSW data with x < 0.1. The
reason for this cut is threefold: (i) the systematic errors
in the low-x region are large [44]; (ii) the nuclear correc-
tions at small x are not completely under control, as was
discussed in Sect. 3.2; (iii) at low x, the CDHSW results
disagree with the CCFR findings for the cross sections [76]
and for the structure functions [3].

4.2 Fitting procedure

The main steps of our fitting procedure are summarized
below. For each iteration:

1. The pdf are parametrized at a given value of the mo-
mentum transfer, denoted Q0. We choose Q2

0 =
4 GeV2.

2. The DGLAP equations are solved numerically in the x
space [77] (see [78] for a comparison of different NLO
evolution codes).

3. The evolved pdf are convoluted with the Wilson coef-
ficients to obtain the structure functions (see Sect. 2).

4. Assuming that all experimental uncertainties are nor-
mally distributed the χ2 is computed as

χ2 =
∑
exp

∑
dat

[Odat
exp − Ofit × (1 − νexpσexp − ∑

k δ
dat
k (sexp

k ))]2

σ2
dat,stat + σ2

dat,uncor

+
∑
exp

ν2
exp +

∑
exp

∑
k

(sexp
k )2

8 We thank W. van Neerven for having provided us the code
computing the order-αs Wilson coefficients published in [67].

9 This is not the case for the latest E772 Drell–Yan data [70]
and that is why we do not consider them here.

+
2∑

i,j=1

[(aν
i − āν

i )Mν
ij(a

ν
j − āν

j )

+(aν̄
i − āν̄

i )M ν̄
ij(a

ν̄
j − āν̄

j )], (23)

where O stands for the observables (structure func-
tions and differential cross sections). The first two sums
run over the data (dat) of the various experiments
(exp); σexp is the relative overall normalization un-
certainty; σdat,stat and σdat,uncor are the statistical er-
ror and the uncorrelated systematic error, respectively,
corresponding to the datum dat; νexp is the number of
standard deviations corresponding to the overall nor-
malization of the experimental sample exp. δdat

k (sexp
k )

is the relative shift of the datum dat induced by a
change by sexp

k standard deviations of the kth corre-
lated systematic uncertainty source of the experiment
exp; it is estimated by

δdat
k (sexp

k ) =
Odat

exp(s
exp
k = +1) − Odat

exp(s
exp
k = −1)

2Odat
exp

sexp
k

+
[Odat

exp(s
exp
k = +1) + Odat

exp(s
exp
k = −1)

2Odat
exp

− 1
]

×(sexp
k )2,

where Odat
exp(s

exp
k = ±1) is the experimental determina-

tion of Odat
exp obtained by the variation by ±1σ of the

kth source of uncertainty. The last term in (23) has
already been discussed in Sect. 3.1.1 (11).
Notice that even though the parameters νexp, s

exp
k , aν

i ,
and aν̄

i are obtained from the global χ2 minimization,
they do not enter in the counting of the degrees of free-
dom since they are determined by the counter-terms.
The correlated systematic uncertainties are taken into
account whenever information about them is available.
This is the case for H1 [12], BCDMS [64], and NMC
[10]. For CDHS and BEBC, no information is avail-
able, and for E605 [13], the uncorrelated systematic
uncertainties dominate. The systematic uncertainties
of this later experiment are then added in quadrature
and included in σ2

dat,uncor of (23). As already pointed
out in Sect. 3.1.3, the systematic uncertainties of the
BEBC data are not known. Since these data cover the
same region as the CDHS data, for both data sets we
have taken into account only the statistical uncertain-
ties (this has a negligible effect on the χ2 minimiza-
tion, since the statistical significance of these samples
is rather small).

5. The MIGRAD algorithm of the MINUIT program [79]
is used to minimize the χ2.

Given the importance of nuclear effects in the treat-
ment of the neutrino data, we performed as a check an-
other fit, in parallel to the main fit, in which the nuclear
parameters αi of (21) are not constrained to the values ᾱi

obtained by the independent parametrization of the Fe/D
structure function ratio described in Sect. 3.2.2, but are
readjusted a posteriori. This is done by adding the coun-
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terterm
3∑

i,j=1

(αi − ᾱi)M
Fe/D
ij (αj − ᾱj) (24)

to the χ2 expression of the global pQCD analysis. In (24),
M

Fe/D
ij = (1/2) ∂2χ2

Fe/D/∂αi∂αj . We found that the two
fits give very similar results.

4.3 The parametrization

Imposing the isospin symmetry leads to the following re-
lations among the pdf: up = dn ≡ u, dp = un ≡ d,
ūp = d̄n ≡ ū, d̄p = ūn ≡ ū, sp = sn ≡ s, s̄p = s̄n ≡ s̄.

In our main fit, which we call fit1, the pdf uv ≡
u − ū, dv ≡ d − d̄, ū, d̄, s, s̄ and g (the gluon density) are
parametrized at Q2

0 = 4 GeV2 as follows:

xuv(x,Q2
0) = Auv x

Buv (1 − x)Cuv

×(1 +Duv x
Euv ), (25)

xdv(x,Q2
0) = Adv x

Bdv (1 − x)Cdv

×(1 +Ddv x
Edv ), (26)

x(ū+ d̄)(x,Q2
0) = A+ x

B+ (1 − x)C+

×(1 +D+ x
E+), (27)

x(d̄− ū)(x,Q2
0) = A− xB− (1 − x)C−

×(1 +D− x), (28)

xs(x,Q2
0) = xs̄(x,Q2

0) = As x
Bs (1 − x)Cs

×(1 +Ds x
Es), (29)

xg(x,Q2
0) = Ag x

Bg (1 − x)Cg

×(1 +Dg x
Eg ). (30)

This parametrization form is similar to that used in [80]
(we refer to this article for a justification of this choice).

Generally it is also assumed that s = s̄. The data sam-
ples used in the existing global analyses [19–21] cannot re-
solve s and s̄ independently. In our case, the information
coming from neutrino and antineutrino differential cross
sections allows testing of the hypothesis s = s̄. We thus
performed another fit, called fit2, allowing for a charge
asymmetry in the strange sea, s 6= s̄.

Some of the parameters in (25)–(30) are determined
by physical constraints. One normalization factor, say Ag,
is fixed by the momentum sum rule,

∫ 1
0 (xg + x

∑
i(qi +

q̄i)) dx = 1. The two normalization parameters Auv and
Adv are fixed by the number sum rules

∫ 1
0 uvdx = 2 and∫ 1

0 dvdx = 1.
While the intermediate-x and large-x shape of the

strange distribution is well constrained by the data en-
tering the fit, the small-x behavior is not. Thus we set
Bs = B+. We also set Buv = Bdv = B−, as suggested by
Regge theory. It should be noted that from a statistical
point of view, these constraints do not worsen the χ2 and
are required for an invertible second derivative χ2 matrix
to be obtained.

Table 7. Contribution to the global χ2, and number of points,
of the data samples entering the fits. The values of the in-
dividual χ2 do not include the normalization and correlated
systematic shifts. The last column indicates the number of ex-
perimental parameters: overall normalization of the data sets
and correlated systematics. The contributions of the experi-
mental parameters to the χ2 amount to 43.6 for fit1 and 40.5
for fit2

Experiments # pts. χ2 χ2 # exp.
fit1 fit2 param.

BCDMS (100) σµp 94 108.0 110.8 12
BCDMS (120) σµp 99 81.6 81.0
BCDMS (200) σµp 79 92.7 90.7
BCDMS (280) σµp 76 89.7 87.6
BCDMS (120) σµD 99 96.9 93.1
BCDMS (200) σµD 79 93.5 88.8
BCDMS (280) σµD 76 64.6 63.7
BEBC σνp 68 65.2 67.6 0
BEBC σν̄p 49 76.4 76.5
BEBC σνD 70 65.3 65.4
BEBC σν̄D 49 49.7 46.7
CDHS σνp 45 50.6 48.6 2
CDHS σν̄p 42 53.7 53.2
CDHSW σνFe 494 264.9 250.4 5
CDHSW σν̄Fe 492 274.2 277.5
E605 (DY) 136 104.9 104.1 1
E866 ADY 11 8.2 8.2 1
H1 (94-svx) F ep

2 24 26.7 26.7 7
H1 (94-nvx) F ep

2 156 180.6 180.3
NMC (90) F µp

2 34 32.6 32.5 16
NMC (120) F µp

2 46 67.0 67.3
NMC (200) F µp

2 61 99.4 99.3
NMC (280) F µp

2 68 106.1 105.6
NMC (90) F µD

2 34 24.0 23.8
NMC (120) F µD

2 46 50.6 50.8
NMC (200) F µD

2 61 62.6 62.7
NMC (280) F µD

2 68 94.8 95.6
NA51 ADY 1 2.7 2.7 0
Total χ2 2657 2430.8 2405.0 44

5 Results

We present now the results of our fits. The strong coupling
is fixed at the value αs(M2

Z) = 0.120, which is close to the
world average [81].

The contributions of the different data sample to the
χ2 are given in Table 7. The total χ2 per degree of free-
dom is excellent for both fits. The amount of systematic
corrections for each datum, i.e., the value of the term
[νexpσexp +

∑
k δ

dat
k (sexp

k )] in (23), is between -6% and
+12% for all fits.

The parameters of (25)–(30) are listed in Table 8, and
the parton densities are shown in Fig. 5, where they are
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Table 8. Values of the parameters of the pdf at Q2
0 = 4 GeV2

fit1 fit2

Ag 7.72 7.3
Bg 0.089 0.081
Cg 21.26 20.11
Dg 12072 6990
Eg 4.17 4.0
Auv 1.43 2.05
Buv 0.49 0.55
Cuv 3.60 3.75
Duv 4.47 3.59
Euv 0.81 0.97
Adv 1.02 1.40
Bdv 0.49 0.55
Cdv 6.03 6.63
Ddv 23.06 32.63
Edv 1.76 2.07
A+ 0.071 0.075
B+ -0.245 -0.240
C+ 8.31 8.62
D+ 11.29 13.30
E+ 0.88 0.97
A− 0.11 0.12
B− 0.49 0.55
C− 16.08 16.31
D− -55.62 -58.46
E− 1 1
As 0.064 0.066
Bs -0.245 -0.240
Cs 5.31 5.59
Ds 443 11354
Es 8.26 12.04
As̄ 0.64 0.066
Bs̄ -0.245 -0.240
Cs̄ 5.31 5.44
Ds̄ 443 339
Es̄ 8.26 7.39

compared to the results of the other global fits. The mo-
mentum fractions of the various partons are listed in Ta-
ble 9.

The parton distributions in Fig. 5 are accompanied
by the error bands computed as explained in Appendix B.
These do not take into account the uncertainties related to
the functional choice of the pdf, nor those inherent to the
treatment of the errors, which are assumed to be normally
distributed. The meaning of the error bands of our pdf is
the following. Once a specific form for the pdf is chosen
and the constraints described in Sect. 4.3 are imposed,
the error bands correspond to an increase of the χ2 by
one unit. Thus their width is determined not only by the
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Fig. 5. The parton distribution functions of fit1, with their
error bands, compared to the GRV98 (solid line), CTEQ4M
(dashed line) and MRST (dotted line) fits. The results of fit1
for uv, ū and d̄ – hardly visible – nearly coincide with the
MRST and CTEQ4M results

abundance and the precision of the data, but also by the
constraints on the pdf. This explains why the error bands
may be small even in kinematic regions where there are
no data.

With respect to the other parametrizations, our gluon
density turns out to be higher at intermediate x. This
could be because we do not use the prompt photon data,
which tend to favor a larger glue at high x and a smaller
one at intermediate x. These data are still quite controver-
sial, and some of them seem to be in disagreement with the
QCD predictions (for a recent discussion, see [82]). Also,
their compatibility with the DIS data is still an unset-
tled issue. Our glue is determined by DIS measurements
only and may be in slight disagreement with the prompt
photon data at medium and high x. We will explore this
problem in a future work, where we will make use of an
enlarged data set.

We also find a slight discrepancy in the dv distribu-
tion between our results and the other global fits. This is
not surprising, since in our parametrization, we did not
include the CDF data on the lepton asymmetry in W pro-
duction at the Tevatron [83]. These data constrain the u/d
ratio at x = 0.05−0.1, which is precisely the region where
some difference can be seen between our dv(x) and the
CTEQ and MRST distributions.

The structure function F2 measured in different
charged-lepton DIS experiments is shown in Figs. 6, 7 and
8 with the curves of fit1. Our fits for the Drell–Yan data
are presented in Figs. 9 and 10. An excellent overall agree-
ment is observed. In Fig. 10b we plotted the ratio d̄/ū at
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Table 9. Fraction of the total nucleon momentum carried by the partons for three
values of Q2. The results of fit1 (upper row) and fit2 (lower row) are displayed. The
errors are computed as explained in Appendix B

Q2 g uv dv ū d̄ s s̄

5 42.9±0.4 27.9±0.3 11.2±0.2 3.0±0.1 3.9±0.1 2.1±0.2 2.1±0.2
GeV2 42.8±0.5 27.9±0.3 11.2±0.2 2.9±0.1 3.8±0.2 2.3±0.2 2.2±0.2

20 46.6±0.3 24.6±0.3 9.8±0.2 3.2±0.1 4.0±0.1 2.4±0.2 2.4±0.2
GeV2 46.5±0.4 24.7±0.2 9.9±0.2 3.1±0.1 3.9±0.1 2.6±0.2 2.4±0.2
100 49.4±0.3 22.1±0.3 8.8±0.2 3.3±0.1 4.0±0.1 2.6±0.2 2.6±0.2

GeV2 49.3±0.3 22.1±0.2 8.8±0.2 3.3±0.1 4.0±0.1 2.8±0.2 2.7±0.2
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Fig. 6. H1 data vs. fit1. BCDMS and NMC hydrogen tar-
get data belonging to the x domain covered by H1 are also
shown. These two data sets have been rebinned into the H1 x
bins for plotting purposes. The data are renormalized by the
overall normalization factor determined by the fit and they are
plotted with an additive bin constant c(xi) = 0.6∗(i−0.5) cor-
responding to xi = {0.32, ..., 8.10−4}. The error bars represent
the quadratic sum of statistical and uncorrelated systematic
errors

Q2 = 30GeV2, together with its error band. Notice that
the fit, which is dominated by the E866 data, yields a d̄/ū
ratio which lies below the NA51 determination.

The reduced ν (ν̄) differential cross section

d2σr

dxdy
=

2π(M2
W +Q2)2

G2
FMNM4

WE

1
Y

d2σ

dxdy
, with

Y = 1 + (1 − y)2 − MNxy

E
, (31)
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Fig. 7. NMC deuterium target data vs. fit1. The different
beam-energy samples are shown separately. The data are renor-
malized by the overall normalization factor determined by the
fit and multiplied by a constant c(xi) = {4.8, 4, 3.2, 2.5, 2,
1.5, 1.2, 1, 7.5, 5.2, 3.7, 2.5, 1.7, 1.2, 1, 1} corresponding to
xi = {0.0125,..., 0.07, 0.09,..., 0.5}. The data have been re-
binned into these xi bins for plotting purposes. The error bars
represent the quadratic sum of statistical and uncorrelated sys-
tematic errors

computed from fit1 is compared to the data in Fig. 11
(hydrogen target), Fig. 12 (deuterium), and Fig. 13 (iron).
The BEBC and CDHS hydrogen and deuterium data are
well fitted down to small x. These data contribute to
constraining the valence distributions without being af-
fected by nuclear effects. Figure 13 also shows that the
CDHS iron data, though they do not enter the fit, are
well described by it. As for the CDHSW rejected data
(x < 0.1), discrepancies with the fit appear only in the
first bin x = 0.045 of Fig. 13.
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Fig. 8. BCDMS hydrogen target data compared to fit1. The
different beam-energy samples are shown separately. The data
are renormalized by the overall normalization factors, and the
correlated systematic shifts determined by the fit. The error
bars correspond to the quadratic sum of statistical and un-
correlated systematic errors. Because we use the BCDMS dif-
ferential cross section data in our fits, the F2 data shown in
this plot have been determined by using FL from fit1. The
data are renormalized by the overall normalization factor de-
termined by the fit and multiplied by a constant c(xi) = {3,
2.5, 2, 1.5, 1.2, 1, 1, 1, 1, 1, 1} corresponding to xi = {0.07,...,
0.275, 0.35,..., 0.75}

Figures 13, 8, 6, and 7 and the χ2 results of Table 7
show explicitly that the ν and ν̄ iron data are compatible
with the data on F2 coming from NC charged-lepton DIS,
even in the region 0.045 < x < 0.2. By contrast, in [3,84]
a sizeable discrepancy is found between the CCFR F ν

2 and
the NMC Fµ

2 . From the analysis performed here, which is
done – we recall – on neutrino cross sections, no disagree-
ment emerges between charged-lepton and neutrino DIS
measurements. We checked that when the CCFR structure
functions are included in our analysis, the fit worsens. We
also found that the F3 data are much better described than
the F2 data. We do not give any quantitative information
about the χ2 of this particular fit, since we considered
the statistical errors only (the use of the total systematic
uncertainties is not recommended by the CCFR Collabo-
ration). In conclusion, some incompatibility seems to ex-
ist between the CCFR structure functions and all other
charged-lepton and neutrino DIS data. A conclusive word
on this matter could come from the analysis of the CCFR
cross sections, which are unavailable at the moment.
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.

The longitudinal structure function FL and the
longitudinal-to-transverse cross section ratio R,

FL = F2 −
(

1 +
4M2

Nx
2

Q2

)
2xF1 ,

R =
F2

2xF1

(
1 +

4M2
Nx

2

Q2

)
− 1,

computed using the pdf of fit1 (recall that all our fits in-
clude target mass corrections) are compared to the NMC
[10] and BCDMS [11] results in Fig. 14a, the H1 measure-
ment [85] in Fig. 14b, and the CDHSW measurement [7]
in Fig. 14c. Again, one can see a good agreement between
our fit and the experimental results.

The beam-energy dependence of the CDHSW νFe and
ν̄Fe data, resulting from the global χ2 minimization, is
shown in Fig. 2. The deviation from the independent linear
fit of Sect. 3.1.1 is small for ν̄Fe data and larger for νFe.

5.1 The strange-sea density

Let us concentrate now on the strange-sea density. Be-
cause of the lack of data able to constrain it, this distribu-
tion plays a lesser role in the existing global fits. Two of
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Fig. 14a–c. Results of fit1 for the longitudinal cross sec-
tions and structure functions. Comparison of R and FL calcu-
lated in fit1 with: a the BCDMS and NMC measurements of
R = σL/σT; b the H1 extraction of FL; c the CDHSW mea-
surements (the dashed line is F ν̄

L ; the solid line is F ν
L ). None of

these measurements enter our fits, and only those correspond-
ing to Q2 ≥ 3.5GeV2 are shown. The error bars represent the
quadratic sum of the statistical and systematic errors. Each
point of these plots corresponds to different values of Q2. The
curves are obtained by smooth interpolation between the cal-
culations performed at these points

them (CTEQ [19] and MRST [20]), guided by the results
of the CCFR determination of s(x) [22], in particular by
the CCFR value of the strange-to-nonstrange momentum
ratio κ ≡ 〈x(s+ s̄)〉/〈x(ū+ d̄)〉 ' 0.5, impose

s(x) + s̄(x) =
1
2

[ū(x) + d̄(x)] . (32)

In the GRV analysis [21], the strange distribution is
instead set to zero at the input scale and then radiatively
generated.

The abundance of our neutrino and antineutrino data
sets allows us to fit s(x) with no extra constraints. The
resulting s distribution of fit1 is shown, with its error
band, in Fig. 5, where it is compared with the other fits.
Notice that it turns out to be closer to MRST and CTEQ
at large x, and to GRV at low x, where it is however much
less constrained. From Table 9, one sees that in fit1, κ =
0.67 at Q2 = 20 GeV2.

In Fig. 15 s(x) is plotted at three different Q2 val-
ues, together with the CCFR results [22]. The agreement
is good, although we must recall that the CCFR extrac-
tion of the strange distribution from dimuon production
in ν(ν̄)Fe DIS has been criticized in many respects [18,24,
35,86].
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Figure 16 shows quantitatively how fit1 is favored
with respect to another fit, fit1b, in which the constraint
(32) is imposed. The total χ2 of fit1b is 2492.4, higher
than the χ2 of fit1 by 62 units. In Fig. 16, we plotted the
mean value of the so-called pull distribution as a function
of x, for the CDHSW data:

〈pull〉xdat
=

1
Nexp(xdat)

(33)

×
∑
dat

Odat
exp − Ofit{1 − νexpσexp − ∑

k δ
dat
k (sexp

k )}√
σ2

dat,stat + σ2
dat,uncor

,

where Nexp(xdat) is the number of data at x = xdat for
the experiment exp. In our case, exp stands for CDHSW
(νFe) or CDHSW (ν̄Fe). One can see from Figs. 16a and
16b that it is the ν̄ data which tend to favor fit1 with
respect to fit1b.

A very interesting question is whether the strange dis-
tribution is equal or not to the antistrange one. The usual
assumption s(x) = s̄(x) is not in fact dictated by first
principles.

We thus looked for a possible charge asymmetry of the
strange sea by performing a fit, called fit2, in which we
release the constraint s = s̄. From Table 5, one can see
that the attempt to disentangle the s and s̄ distributions
is justified by the abundance of antineutrino events in our
data set.

The parametrization (29) for s = s̄ is replaced in fit2
by two independent functions for s and s̄,

xs(x,Q2
0) = As x

Bs (1 − x)Cs (1 +Ds x
Es), (34)

xs̄(x,Q2
0) = As̄ x

Bs̄ (1 − x)Cs̄ (1 +Ds̄ x
Es̄). (35)

We set As = As̄ and Bs = Bs̄, and we fix one more pa-
rameter by imposing

∫ 1
0 (s−s̄) dx = 0 (no net strangeness).

The main results of fit2 are:

– The minimum χ2 decreases by 25 units with respect to
fit1 (see Table 7). Hence the choice s 6= s̄ is slightly
favored.

– The strange distribution turns out to be harder than
the antistrange one. The difference s − s̄ is shown in
Fig. 17a with its error band. In Fig. 17b, we plot the
ratio s/s̄ at Q2 = 20 GeV2.

– The momentum fractions of the fit2 partons at dif-
ferent Q2 values are listed in Table 9. The momentum
fraction 〈xs〉 is larger than 〈xs̄〉. Notice also that fit2
favors a higher value for the strange-to-nonstrange mo-
mentum ratio κ, with respect to the fit with s = s̄.

Let us comment now on a previous test of the strange-
sea asymmetry. In [22], the CCFR Collaboration found
no evidence for s 6= s̄. In their analysis, the constraint
s(x) = [ū(x) + d̄(x)] ×A(1 − x)C was imposed; this limits
the flexibility of the fit. Moreover, the dimuon sample of
CCFR does not cover the high-x region and consists only
of 5000 neutrino events and 1000 antineutrino events. Our
analysis does not have these limitations (our data sample
is much more balanced between neutrino and antineutrino
events, and no extra constraints are set but those ensuring
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CCFR is also shown

no net strangeness), and it gives a more precise result on
s/s̄, as one can see from Fig. 17.

In order to understand how the difference s− s̄ is con-
strained by the data, let us consider the quantity

∆ν−ν̄ ≡ 4πx(M2
W +Q2)2

G2
FM

4
W

[
d2σνN

dxdQ2 − d2σν̄N

dxdQ2

]
. (36)

The flavor content of ∆ν−ν̄ is more evident in the parton
model, where it reads

∆ν−ν̄ ∝ xs(x) − xs̄(x) + Y−[xuv(x) + xdv(x)] , (37)

with Y− = 1 − (1 − y)2. The ν − ν̄ cross section difference
(36) is plotted as a function of Y−, at fixed x and Q2,
in Fig. 18. Comparing fit1 and fit2, one can see that
their results deviate with increasing x (being very close to
each other for x . 0.3). At high-x, fit1 undershoots the
CDHSW values of ∆ν for all Q2 bins. Fig. 18 shows that
the CDHSW data are more precise at high-y. Hence it is
this region which drives the result on s − s̄. Looking at
Fig. 16c,d, one sees also that it is the ν data which favor
fit2 with respect to fit1.

Since the nuclear corrections applied to the CDHSW
data are sizeable (see Fig. 4b), one may naturally ask to
what extent our results are affected by the uncertain-
ties regarding the evaluation of these corrections. The
Fe/D ratio, as we have seen (see Fig. 3 and the check de-
scribed at the end of Sect. 4.2), is well determined by the
charged-lepton data. Moreover, it factorizes in the ν − ν̄
difference. Hence this component of the nuclear correction
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is rather harmless. The isoscalarity corrections are, how-
ever, different for neutrino and antineutrino observables
and are quite large. Looking at (17, 20), one sees that
the isoscalarity ratio cannot exceed A/(2Z) = 1.073 for
iron. Fig. 4a shows that the maximal value we obtained
is not far from this upper bound. We found that when
the isoscalarity ratio is reduced, the resulting s− s̄ differ-
ence gets larger. Thus we conclude that our results on the
strange-sea asymmetry are not spoiled, at least qualita-
tively, by the uncertainties on the isoscalarity corrections.

Theoretically, a charge-asymmetric sea is accounted for
by introducing a distinction between extrinsic and intrin-
sic qq̄ pairs [87]. The extrinsic sea consists of short-lived
quarks and antiquarks produced by QCD hard subpro-
cesses (bremsstrahlung and gluon splitting). It is evident
that the extrinsic component of the sea cannot be charge
asymmetric. On the other hand, the intrinsic qq̄ pairs exist
over a longer time scale and are associated with nonpertur-
bative phenomena. These pairs are still produced by gluon
fragmentation but have time, before recombining, to inter-
act with other partons. They represent higher Fock states
of the nucleon (|qqqqq̄ . . .〉) and manifest themselves in
meson–baryon fluctuations.

There is no fundamental principle forbidding a possible
charge asymmetry of the intrinsic sea. Actually, there are
reasons to believe that such asymmetry should indeed be
a property of the strange and charmed sea [87–89]. If the

strange (or charmed) sea is asymmetric at low Q2 because
of some nonperturbative mechanism, the QCD evolution
simply preserves this asymmetry because s− s̄ (or c− c̄)
evolves like a nonsinglet distribution, and its first moment
is constant. An interesting feature of the intrinsic sea is
that it tends to exist at relatively large values of x [87–89],
corresponding to the most energetically favored configu-
ration of the nucleon light–cone wave function.

In the simplest model [90,88,89], the production of
the intrinsic strange sea is attributed to the p → ΛK+

fluctuation. Due to chiral symmetry pseudoscalar mesons
have relatively small masses. As a consequence [88], the
average x of the s̄ antiquark in the K is smaller that the
average x of the s quark coming from the Λ. Thus the
s distribution is expected, on quite general grounds, to
be harder than the s̄ distribution. This expectation has
been substantiated by explicit calculations in [90,89,91]
(for other models, see [92]). Our results on the strange-
and antistrange-sea density are, at least qualitatively, in
agreement with the predictions of the intrinsic sea theory.

6 Conclusions

We have presented a global next-to-leading- order QCD
analysis of a large set of DIS data, including the (properly
reevaluated) neutrino and antineutrino differential cross
sections of BEBC, CDHS, and CDHSW, the charged-
lepton structure functions of NMC, BCDMS, and H1, and
the Drell–Yan data of E605, NA51, and E866. The full use
of the information on the nucleon structure embodied in
neutrino DIS observables and a proper treatment of the
experimental systematic uncertainties are the main nov-
elties of our approach. In particular, the large-statistics
CDHSW iron data allow disentanglement of the strange
sector from the nonstrange one; this leads to a consistent
determination of s(x) within a global fit similar to what
happens for the other parton distributions.

The charm mass effects, whose relevance for an accu-
rate determination of the parton densities is a recent firm
acquisition, have been consistently treated in a massive
factorization scheme, the fixed flavor scheme.

We found no evidence of any discrepancy between the
neutrino data we considered in our fit and the charged-
lepton data. A complete and unambiguous analysis of all
neutrino experiments and a conclusive check of the com-
patibility of their data with the charged-lepton data would
be possible only if we could use the CCFR differential cross
sections, which are unfortunately not available.

The large statistics of antineutrino events in our data
sample allowed us to test the hypothesis of a charge-
asymmetric strange sea: s 6= s̄. We found some evidence
for such an asymmetry. The qualitative features of the re-
sulting s and s̄ distributions (namely, a large x tail at low
Q2 and s̄(x) softer than s(x)) agree with the expectations
of the intrinsic sea theory.

Finally, we outline some developments. As for the
strong coupling, in the present work we took a pragmatic
attitude, using the world average value. A more system-
atic study, in which we will extract αs from the DIS data
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and investigate its correlation with the gluon density, will
be presented in a forthcoming paper.

Another important development that we have in mind
is the comparison of the results obtained in the two QCD
massive schemes, FFS and VFS.

Finally, one should envisage some independent, and
perhaps more direct, experimental test of the charge asym-
metry of the strange sea, for which we presented here only
indirect statistical evidence.
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Appendix A: Unfolding procedure

A two-dimension net in x and y is defined. The nodes cor-
respond to the centers of the experimental bins. Following
[77], we define a basis of continuous functions φi(x) and
ψj(y) such that φi(xc

l ) = δil and ψj(yc
m) = δjm (where δil

is the Kronecker symbol). Provided these functions are de-
termined using a spline interpolation [93], the differential
cross section can be written as

d2σν(ν̄)Fe(x, y, Ec
k)

dxdy
=

nx∑
l=1

ny∑
m=1

φi(x)ψj(y)

×d2σν(ν̄)Fe(xc
l , y

c
m, E

c
k)

dxdy
. (38)

Applying the average theorem, we derive from (38)

σijk =
nx∑
l=1

ny∑
m=1

ci,lx c
j,m
y

d2σν(ν̄)Fe(xc
l , y

c
m, E

c
k)

dxdy
(39)

with

σijk ≈ Nijk

C
, ci,lx =

∫ xi+1

xi
φl(x)dx

xi+1 − xi
,

cj,my =

∫ yj+1

yj
ψm(y)dy

yj+1 − yj

where Nijk is the number of events experimentally ob-
served and C is the number of scattering centers in the
target.

The differential cross sections at the bin centers
d2σν(ν̄)Fe(xc

l , y
c
m, E

c
k)/dxdy are obtained by the reversal of

this system of nx × ny equations. Numerically, the more
stable results were obtained by the use of the first-order
spline. In this case, φi(x) and ψj(y) are the Lagrangian
(or “hat”) functions [93]

φi(x) =

{
(x− xi−1)/(xi − xi−1), xi−1 ≤ x ≤ xi

(xi+1 − x)/(xi+1 − xi), xi ≤ x ≤ xi+1
0 otherwise.

(40)

The same expression holds for ψj(y).
However, using (40), one can see that the system of

(39) is incomplete if x1 6= 0 or xnx
6= 1 or y1 6= 0 or yny

6=
1. Indeed, the boundary bins receive some contributions
(in the r.h.s. of (39)) coming from the bin neighbors that
are not included in the measurements. To overcome this
difficulty, we have defined artificial extra bins [xnx , xnx+1]
∀y, [y0, y1] ∀x and [yny , yny+1] ∀x. Then we fixed the cross
section at the center of these new bins to a certain fraction
λ of the closest cross section measurement. Under this
modification, (39) becomes an inhomogeneous system,

σi,j,k − λ

(
ci,nx+1
x cj,0y σnx,1,k + ci,nx+1

x cj,ny+1
y σnx,ny,k

+
ny∑

m=1

ci,nx+1
x cj,my σnx,j,k

+
nx∑
l=1

ci,lx [cj,0y σl,1,k + cj,ny+1
y σl,ny,k]

)

=
nx∑
l=1

ny∑
m=1

ci,lx c
j,m
y

d2σν(ν̄)Fe(xc
l , y

c
m, E

c
k)

dxdy
, (41)

and the differential cross sections at the bin centers are
obtained by the inversion of this system with λ = 1.

In order to test the sensitivity of our results to the
choice of λ, we have set λ to some extreme values: λ = 2,
λ = 1/2. We observed a variation of the order of ≈ 20% in
the highest x bin for all y bins. But we point out that the
results are completely stable in the first x < 0.1 bins for all
y bins. This method is then used to perform the definitive
bin center correction in these particular bins, as mentioned
in Sect. 3.1.1. We estimate the uncertainty of the method
by repeating the procedure using a second-order spline
interpolation to define the basis functions φi(x) and ψj(y).
The ratio of the two bin center correction factors is then
taken, bin by bin, as an estimate of the uncertainty due to
the method, and added in quadrature to the uncorrelated
systematic error of the measurement (it is of the order of
. 2% and reaches 7.5% at high y).

Appendix B: Error bands

We describe here the formula used to calculate the er-
ror bands shown throughout the paper. If we call p ≡
{p1, ..., pn} the vector of the free parameters of the fit, the
error band of a given function f is given at each (x,Q2)
point by [94]:

∆f(x,Q2;p0) = |f(x,Q2;p0 + ∆p(x,Q2))

−f(x,Q2;p0 − ∆p(x,Q2))| (42)

where p0 denotes the parameter set minimizing the χ2,
and the vector
∆p(x,Q2) ≡ {∆p1(x,Q

2), ..., ∆pn
(x,Q2)} is given by

∆p(x,Q2) =
M−1∂pf(x,Q2;p)√

∂pf(x,Q2;p)M−1∂pf(x,Q2;p)
(43)
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with Mij = (1/2) ∂2χ2/∂pi∂pj and ∂p = {∂/∂p1, ...,
∂/∂pn}.
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B. Bade lek, J. Kwieciński, Phys. Rev. D 50, 4 (1994)
53. A. Amaudruz, NMC Collaboration, Nucl. Phys. B 441,

3 (1995); M. Arneodo, et al., NMC Collaboration, Nucl.
Phys. B 441, 12 (1995)
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